

Date: 22-11-2024

 Dept. No.

Max. : 100 Marks

Time: 01:00 pm-04:00 pm

SECTION A
Answer ANY FOUR of the following
4 x 10 = 40 Marks

- Find y_n where $y = \frac{3}{(x+1)(2x-1)}$.
- Find the maxima and minima of the function $2x^3 - 3x^2 - 36x + 10$.
- Find sum to infinity of the series $1 + \frac{3}{4} + \frac{3}{4} \frac{5}{8} + \frac{3}{4} \frac{5}{8} \frac{7}{12} + \dots$.
- Determine the inverse of $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}$.
- Find $L(t e^{-t} \sin t)$.
- Express $\sin^5 \theta$ in a series of sines of multiple of θ .
- A car hire firm has two cars, which it hires out day by day. The number of demands for a car on each day is distributed as a Poisson distribution with mean 1.5. Calculate the proportion of days on which (i) neither car is used, (ii) the proportion of days on which some demand is refused.
- Solve the system of the following equations using Cramer's rule:

$$2x - y + 3z = 9; x + y + z = 6; x - y + z = 2.$$

SECTION B
Answer ANY THREE of the following
3 x 20 = 60 Marks

- Explain the purpose of the Leibnitz's theorem and prove that if $y = \sin^{-1} x$,

$$(1-x^2)y_{n+2} - (2n+1)x y_{n+1} + n^2 y_n = 0.$$
- Find the eigenvalues and eigenvectors of the matrix $\begin{pmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{pmatrix}$.
- Using Laplace transform, solve $y'' + 2y' - 3y = \sin t$, given that $y(0) = y'(0) = 0$.
- Explain the regression analysis, and obtain the regression line for the following data.

X	65	66	67	67	68	69	70	72
Y	67	68	65	68	72	72	69	71

- (a) Find the sum to infinity of the series $1 + \frac{1+3}{2!} + \frac{1+3+3^2}{3!} + \frac{1+3+3^2+3^3}{4!} + \dots \infty$
- (b) X is a normal variable with mean 30 and standard deviation 5. Find the probabilities that (i) $26 \leq X \leq 40$, (ii) $X \geq 45$. (10+10)

14. (a) Express $\cos 4\theta$ in terms of $\sin \theta$.

(b) Evaluate: $\int_0^\infty t e^{-3t} \cos t dt.$ (10+10)

\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$